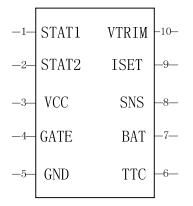
SWITCHMODE LI-ION CHARGE CONTROLLER HB6293

Features

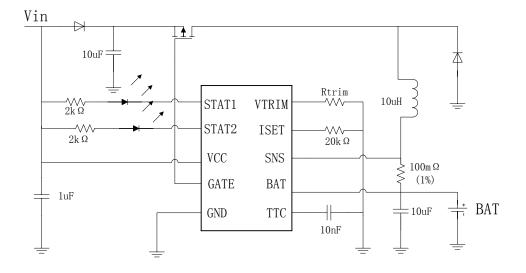
- High-Accuracy Current Regulation PWM Charger Suitable for 1-, or 2-Cell Li-Ion and Li-Polymer Battery Packs
- 0.5% Charge Voltage Accuracy
- Programmable Charge Current Control
- Constant Charge Voltage fine-tuned by External Resistance
- Intelligent Battery Detection
- Integrated Soft Start
- Switching Frequency 600KHz
- LED Charge Status Outputs
- Short Circuit Detection & Protection
- Battery Charging Voltage Protection
- 20-V Absolute Maximum Voltage Rating on IN Pins
- Charge Termination Time adjusted by External Capacitance
- Operating junction temperature range: $-20^{\circ}C \sim 70^{\circ}C$
- MSOP-10 Package

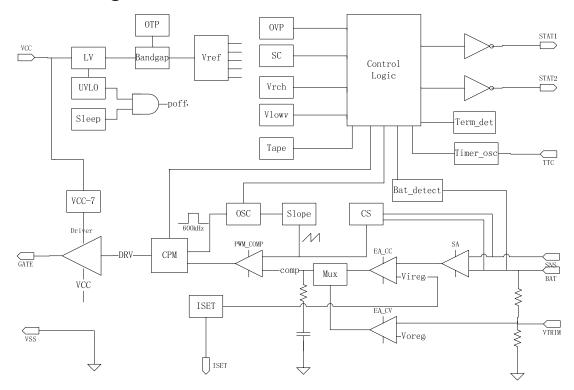
Applications


- Handheld Products
- Charger
- Mobile Devices

Description

The HB6293 series are highly integrated Li-ion and Li-polymer switch-mode charge management devices targeted at a wide range of portable applications. The HB6293 series offers high-accuracy current and voltage regulation, charge preconditioning, charge status, and charge termination, in a small, thermally enhanced MSOP-10 package. The HB6293 charges the battery in three phases: pre-charge, constant current and constant voltage, constant current is decided by the external resistance, and the constant voltage can be fine-tuned by external resistance. Protections of over voltage and short circuit provide a safety backup for charge termination. The HB6293 automatically restarts the charge cycle if the battery voltage falls below an internal threshold and enters sleep mode when VCC supply is removed.


Connection Diagrams


HB6293 MSOP-10 Package

Pin	Name	I/O	Description				
1	STAT1	0	(STAT1)	(STAT2)	Description		
			Green	Red			
2	STAT2	0	OFF	OFF	Charge suspend, battery absent		
			OFF	ON	Charge-in-progress		
			ON	OFF	Charge complete		
			OFF	0.5Hz pulse	Fault condition(timer fault and overvoltage)		
3	VCC	Ι	Input power p	Input power pin			
4	GATE	0	Switch drive output				
5	GND	-	Analog ground input				
6	TTC	-	Connect a capacitor from this node to VSS to set the charge timer. When				
			this input is lo	this input is low, the timer and termination detection are disabled.			
7	BAT	Ι	Battery voltag	Battery voltage sense input & Charge current sense negative			
8	SNS	Ι	Charge current sense positive				
9	ISET	Ι	Charger current set point of pre-charge, constant current charge and				
			charge termination current. Use a resistor to ground to set this value				
10	VTRIM	Ι	Use a resistor to ground or to BAT pin to set constant voltage value				
			slightly				

Typical Application

Block Diagram

Recommended Operating Conditions

	MIN	NOM	MAX	UNIT	
	STAT1, STAT2, VCC	0		20	V
	VCC-GATE	0		8	V
Voltage range	VTRIM, BAT, SNS	0		14	V
	ISET, TTC	0		6	V
	SNS-BAT	-0.2		0.2	V
Operating junction temperature range				125	°C

Electrical Characteristics

Typical values are Temp=25°C VCC=10V

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input Currents				·		
V _{CC} Supply Current	I _{VCC}	Switching Mode		10		mA
Battery discharge sleep	I _{SLP}	VCC <v<sub>BAT+250mV or</v<sub>		10		μA
current		UVLO				
Voltage Regulation				-		
Output voltage	V _{OREG}	1-Cell		4.2		V
		2-Cell		8.4		
Voltage regulation			-0.5%		+0.5%	
accuracy						
Current Regulation	ſ	1	T	-	-	1
Voltage regulated across	V _{IREG}	Fast Charge		100		mV
R _{SNS}		and R_{ISET} =20k Ω				
Output current set	V _{ISET}			1		V
voltage		V _{LOWV} <v<sub>BAT<v<sub>OREG</v<sub></v<sub>				
Output current set factor	K _{ISET}			2000		V/A
Pre-charge						
Voltage regulated across	V _{IPRE}	Pre-charge		20		mV
R _{SNS} of pre-charge		and R_{ISET} =20k Ω				
detection						
Voltage value for	V _{LOWV}	1-Cell		3		V
pre-charge to fast charge		2-Cell		6		
transition						
Deglitch time for		Rising Voltage		30		ms
pre-charge to fast charge						
transition						
Charge Termination			-			
Voltage regulated across	VITERM	Fast charge		10		mV

R _{SNS} of charge		and R_{ISET} =20k Ω		
termination detection				
Deglitch time for charge		Both rising and falling	30	ms
termination		voltages		
Voltage regulated across	V _{ITAPE}		20	mV
R _{SNS} of charge				
termination timing				
Deglitch time for charge		Falling voltage	30	ms
termination				
TAPE termination timer	T _{TAPE}		1800	8
Battery Recharge Thresh	nold	·		
Recharge threshold	V _{RCH}	1-Cell	4.1	V
voltage		2-Cell	8.2	
Deglitch time		Falling voltage	30	ms
STAT1 and STAT2 Drive	Outputs	· · ·	· ·	1
Low-level output	Io	Output voltage 0.5V	10	mA
saturation voltage,				
STATx				
TTC Input	1			
TTC Timer multiplier	K _{TTC}		4.66	H/10nF
C _{TTC} Capacitor	C _{TTC}		10	nF
TTC enable threshold	V _{TTC_EN}	V _{TTC} rising	200	mV
voltage				
UVLO and Sleep Mode				
IC active threshold	V _{UVLO}	VCC rising, 1-Cell	4.2	V
voltage		2-Cell	8.4	
IC active hysteresis	V _{HYS}	1-Cell	200	mV
		2-Cell	400	
Sleep Mode	V _{SLPR}	VCC-V _{BAT} rising	400	mV
	V _{SLPF}	VCC-V _{BAT} falling	200	
PWM			· ·	
Switching frequency	F _{OSC}		600	kHz
Maximum duty cycle	D _{MAX}		98	%
Minimum duty cycle	D _{MIN}		0	%
Battery Detection		· ·	· ·	1
Battery detection current	I _{DETECT}	V _{BAT} <v<sub>RCH</v<sub>	2	mA
during time-out fault				
Discharge current	I _{DISCHRG1}		400	μA
Discharge time	T _{DISCHRG1}		1	s
Wake current	I _{WAKE}		2	mA
Wake time	T _{WAKE}		0.5	s
Termination discharge	I _{DISCHRG2}	Begins after	400	μΑ
current	-DISCHKU2	termination detected		Pr
		detected		

Shenzhen Huatai-ic

		V _{BAT} = <v<sub>OREG</v<sub>		
Termination discharge	T _{DISCHRG2}		250	ms
time				
Protection				
OVP threshold voltage	V _{OVP}		117	%V _{OREG}
Short-circuit voltage	V _{SHORT}	BAT voltage falling,	2	V
threshold, BAT		1-Cell		
		2-Cell	4	
Short-circuit current	I _{SHORT}	V _{BAT} <=V _{SHORT}	25	mA
Thermal trip	T _{TEMP}		125	°C
Thermal hysteresis	T _{HYS}		20	
GATE Drive Output				
Rising time	T _R	C _{GATE} =2nF,10% to	20	ns
		90%		
Falling time	$T_{\rm F}$	C _{GATE} =2nF,90% to	50	
		10%		
Output clamp voltage	V _{CLAMP}	VCC>8	VCC-7	V
level		VCC<8	0	

Typical Operating Performance

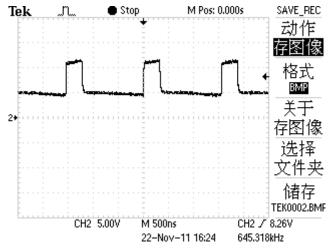
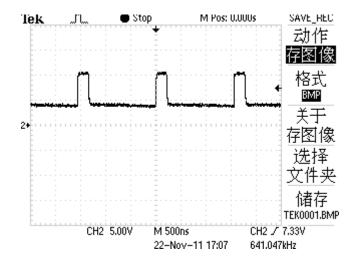
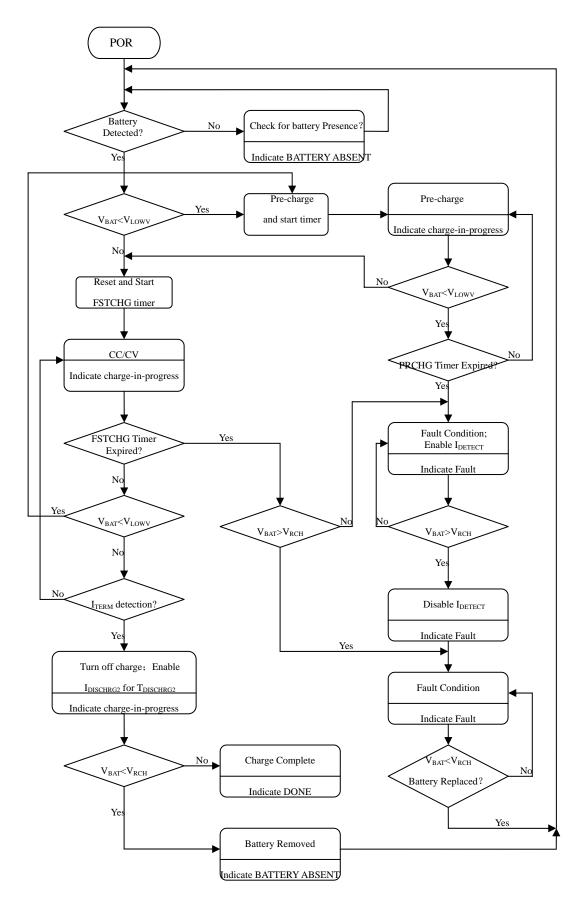
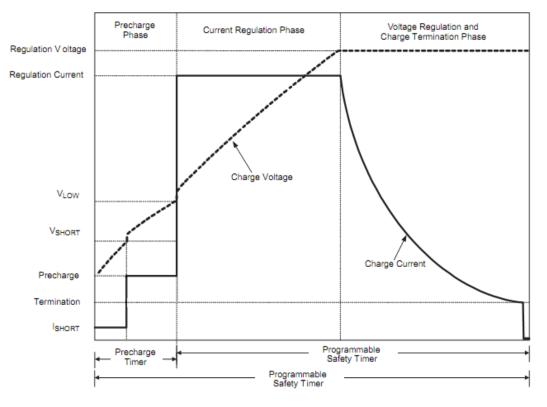
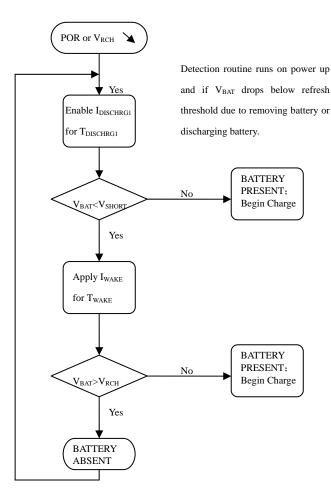


Fig. 1 Switching Waveforms in Fast Charge Mode

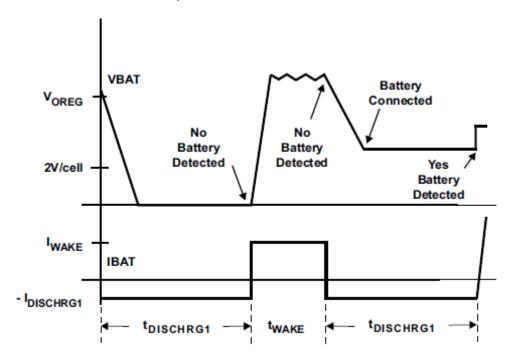




Fig. 2 Switching Waveforms in Constant Voltage Mode

Operational Flow Chart



Detail Description


Typical Charge Profile

Battery Detection

For the absent battery condition, typically the voltage on the BAT pin rises and falls between 0V and V_{OVP} thresholds indefinitely.

Sleep Mode

The HB6293 enters the low-power sleep mode if the VCC pin is removed from the circuit. When VCC falls below UVLO threshold or V_{BAT} +250mV, the HB6293 enters the sleep mode, and minimum discharge current.

Charge Current Set

The value of constant current I_{CHARGE} can be calculated using the following equation:

$$I_{CHARGE} = \frac{K_{ISET} \times V_{ISET}}{R_{SNS} \times R_{ISET}}$$

Where, V_{ISET} is the output voltage of ISET pin, 1V in the constant current phase, 0.2V in the pre-charge phase. R_{SNS} is the external current-sense resistor; K_{ISET} is the A/V gain factor.

After the determination of constant current, the current of pre-charge becomes to $20\% * I_{CHARGE}$, and the current of charge termination becomes to $10\% * I_{CHARGE}$.

Charge Termination Current

Once the termination threshold, V_{ITERM} across R_{SNS} , is detected, the HB6293 inside generates EOC signal and terminates charge, during the voltage regulation phase.

Meanwhile, the chip generates a TAPE signal when the voltage across RSNS falls below twice V_{ITERM} , terminates charge when the voltage still not falls below V_{ITERM} .

Battery Voltage Regulation

The HB6293 monitors the battery-pack voltage between the BAT and GND pins.

The HB6293 enters short circuit detection mode when the battery voltage falls bellow 2V 1-Cell and 4V 2-Cell, pre-charge mode when the battery falls bellow 3V 1-Cell and 6V 2-Cell. The charge termination voltage is 4.2V 1-Cell, 8.4V 2-Cell.

After the charge completed, the HB6293 enters recharge period, if the battery falls bellow 4.1V 1-Cell and 8.2V 2-Cell as a result of current leakage.

Charge Time Limit

The HB6293 provides a programmable charge timer for pre-charge and total charge time, the total charge time is programmed by the following formula:

$$T_{CHARGE} = C_{TTC} \times K_{TTC}$$

Where, C_{TTC} is the capacitor connected to the TTC pin, K_{TTC} is the multiplier.

The pre-charge time is 1/8 of total charge time, the chip enters FAULT state and STAT2 outputs pulse wave, if there is a timeout fault.

Charge Status Outputs

The open-drain STAT1 and STAT2 outputs indicate various charger operations as shown in fallowing table.

STAT1 (Green)	STAT2 (Red)	Charge State
OFF	OFF	Charge suspend, battery absent

		or sleep mode
OFF	ON	Charge-in-process
ON	OFF	Charge complete
OFF	0.5Hz pulse	Fault state (overtime or over
		voltage)

Timer Fault Recovery

As shown in Operational Flow Chart, the HB6293 provides a recovery method to deal with timer fault conditions. The following summarizes this method:

Condition 1: V_{BAT} above recharge threshold and timeout fault occurs.

Recovery method: HB6293 waits for the battery voltage to fall below the recharge threshold. This could happen as a result of a load on the battery, self-discharge or battery removal. Once the battery falls below the recharge threshold, the HB6293 clears the fault and enters the battery absent detection routine. A POR also clears the fault.

Condition 2: V_{BAT} below recharge threshold and timeout fault occurs.

Recovery method: Under this scenario, the HB6293 applies the I_{DETECT} current. This small current is used to detect a battery removal condition and remains on as long as the battery voltage stays below the recharge threshold. If the battery voltage goes above the recharge threshold, then the HB6293 disables the I_{DETECT} current and executes the recovery method described in Condition1. Once the battery falls below the recharge threshold, the HB6293 clears the fault and enters the battery absent detection routine. A POR also clears the fault.

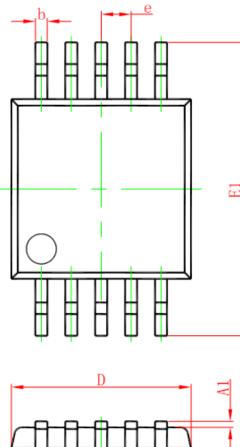
Output Overvoltage Protection

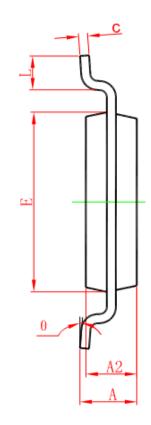
The HB6293 provides a built-in overvoltage protection to protect the device and other components against damages if the battery voltage gets too high, as when the battery is suddenly removed. When an overvoltage condition is detected, this feature turns off the PWM and shows fault. The fault is cleared once V_{BAT} drops to the recharge threshold.

Constant Charge Voltage Fine-tuned

According to the tested value of constant voltage output V_{CV} , using R_{TRIM} between VTRIM pin to GND pulls up V_{CV} , otherwise between VTRIM pin to BAT pin pulls down V_{CV} . Determine the value for R_{TRIM} using the following equations:

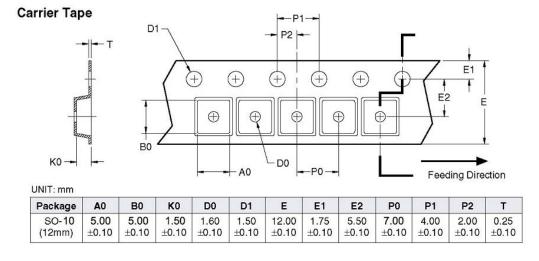
a. One-Cell

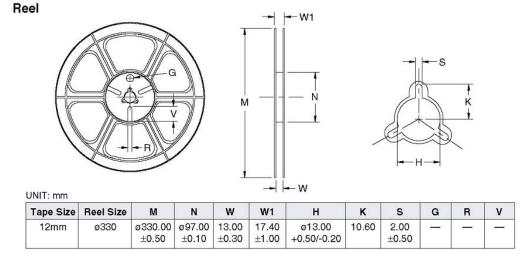

$$R_{TRIM} = \left(\frac{V_{CV}}{4.2 - V_{CV}}\right)R$$


b. Two-Cell

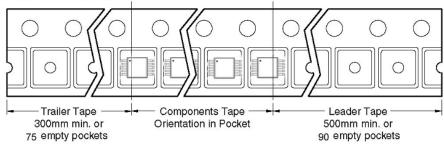
$$R_{TRIM} = \left(\frac{V_{CV}}{8.4 - V_{CV}}\right) 2R$$

Where R=40k Ω $_{\circ}$


Tape and Reel Information



A1


Cumb a l	Dimensions Ir	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	0. 820	1.100	0. 032	0.043
A1	0. 020	0. 150	0. 001	0.006
A2	0. 750	0.950	0. 030	0.037
b	0. 180	0. 280	0.007	0.011
с	0.090	0. 230	0.004	0.009
D	2.900	3.100	0. 114	0. 122
е	0.50(BSC)	0.020(BSC)	
E	2.900	3.100	0. 114	0. 122
E1	4. 750	5.050	0. 187	0. 199
L	0. 400	0.800	0.016	0.031
θ	0°	6°	0°	6°

SOP-10 Tape and Reel Dimensions

Leader/Trailer and Orientation

